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AI INAI IN

Artificial intelligence offers unprecedented possibilities for transp
ortation 

engineering. But engineers must also understand the technology’s limitations. 
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A rtificial intelligence is set to signifi-
cantly transform the field of trans-
portation engineering, offering 

extraordinary opportunities to enhance effi-
ciency, safety, and sustainability. Advanced 
AI algorithms can optimize traffic flow, 
monitor infrastructure systems in real time, 
and swiftly respond to or predict incidents, 
streamlining transportation management 
and operations.

The integration of AI into transportation 
systems requires a rigorous and nuanced 
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AI can continuously monitor the “health”  
of transportation systems, recommend 
actions, or even automate functions.

IMAGE COURTESY OF ISTOCK.COM/PHUTTAPHAT TIPSANA

understanding of its exciting possibilities and 
inherent limitations. Remember, though, that 
AI is not a panacea; it is a tool that depends on 
the quality and comprehensiveness of the data 
it processes. As such, effective implementation 
of AI relies on the expertise of the users to 
comprehend and interpret its outputs. 

But first, civil engineers must understand the 
foundational mechanics of AI to responsibly 
implement these systems.
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To understand the effective application of AI to transportation 
systems, we can think of a wearable health monitor that tracks 
various metrics such as heart rate, blood pressure, movement, 
and oxygen levels. While the raw data generated by wearable 
fitness trackers can be overwhelming and not immediately in-
formative, an AI system trained on comprehensive historical 
health data can uncover subtle patterns and provide person-
alized insights, even in real time. This AI training process 
requires healthcare professionals to guide the development 
and interpretation of these systems. 

Similarly, AI has the potential to continuously monitor the 
“health” of transportation systems, recommending actions 
or even automating functions to optimize the system. To 
succeed, however, this effort requires a combination of appro-
priate data, well-designed algorithms, and experts who under-
stand the nuances of transportation infrastructure. 

For civil engineers, this means learning about AI systems and 
using the extensive data collected from road sensors, bridges, 
vehicles, cameras, public transportation networks, and com-
muters to train such systems on how to operate in a practical, 
safe, and ethical manner. These AI systems can then suggest 

AI POTENTIAL

While we often think of AI as a type of software application, 
it is more accurately seen as a field of data science that 
encompasses various subfields. Broadly, AI involves the sim-
ulation of human intelligence by computers, encompassing 
abilities such as learning, reasoning, decision-making, and 
self-correction. 

Although various forms of AI have existed for decades, 
earlier systems relied on curated rules — set by human ex-
perts — that operated more like a complex series of if–then 
statements. Recent advances have focused attention on sys-
tems that learn from data to identify patterns and improve 
their performance over time, leading to more complex and 
adaptable applications. 

AI involves the simulation 
of human intelligence by 
computers, encompassing 
abilities such as learning, 

reasoning, decision-making, 
and self-correction. 

AI EVOLUTION 

long-term planning solutions, adjust traffic signals to prevent 
congestion, identify effective safety improvements, monitor 
bridge deterioration, and immediately dispatch emergency 
services when hazards are detected or predicted. 

In addition to discussing the development of AI tools and 
how they function, this article will highlight the work of 
several transportation agencies — in New York, Delaware, 
and Texas — that have already demonstrated the potential of 
AI to improve operations.

One of the most significant of these applications is known 
as machine learning, which is currently used by most AI 
systems. Such systems learn from historical data and apply 
statistical models and algorithms to identify patterns and 
improve their performance over time without significant hu-
man intervention. This shift has enabled more complex and 
adaptable AI applications.

Some of the most familiar AI applications, such as ChatGPT 
and Gemini, are powered by large language models trained 
using machine learning techniques. These models fall under 
the umbrella of generative AI, which means they are capa-
ble of handling sophisticated tasks such as writing text in 
response to conversational prompts. 

As the foundational technology behind many advanced AI 
applications, machine learning focuses on developing models 
capable of leveraging data patterns to perform various tasks. 
The training process involves providing the model with 
examples and adjusting parameters to minimize errors and 
enhance performance. To achieve optimal results, successful 
machine learning applications often require balancing model 

HOW MACHINES LEARN
complexity in response to the dataset size and available com-
putational resources.

Engineers must recognize that the effectiveness of an AI system 
hinges on the quality of the training data and the selected AI 
learning process. The data must be comprehensive, representa-
tive, and ethically sourced. Neglecting diverse data inputs can 
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For a supervised learning scenario, a dataset might include 
images of bridge cracks with varying severity (inputs) and corre-
sponding human expert-generated labels indicating the bridge’s 
structural health (outputs). The AI learns to associate the crack 
characteristics with the bridge’s condition based on the patterns 
found in these labeled data (see Figure 2).

Suppose you want to predict the structural condition of a 
bridge based on visual data collected for the structure. The 
inputs could include bridge images categorized according 
to the condition assessment (such as good, fair, poor) based 
on engineering assessments by professionals. The AI system 
would then be trained using these labeled data, in which the 
bridge’s condition is known for each image. The AI learns 

SUPERVISED: LEARNING BY EXAMPLE
the relationships between the visual features and the bridge’s 
structural integrity using image recognition models such as 
convolutional neural networks. 

Given a new set of bridge images, the AI could predict the se-
verity of the damage and classify the bridge’s condition, which 
will be the outputs. The system has now learned to assess a 
bridge’s condition by analyzing images of cracks and deterio-
ration. In the future, it can then identify features in the cracks 
that indicate potential structural problems.  

To realize the benefits of supervised learning, AI models re-
quire a large dataset of labeled data (such as images of bridges 
and their structural health). A diverse training set will also 

lead to biased AI outputs. For instance, an AI system trained 
only on data from high-traffic urban areas will likely fail to 
address the needs of rural transportation networks.

To build a reliable AI system for transportation, the data 
should be carefully organized for three distinct purposes: 
training, validation, and testing (see Figure 1).

 Training: This is the core dataset that the AI model 
learns from. It should be extensive, diverse, and represen-
tative of the real-world scenario the model will be used for. 
XGBoost, a machine learning algorithm, applies recursive 
binary partitioning and training data to build a collection 
of decision trees that establish classifications based on 
similarities. The model refines the decision trees iteratively 
to improve its accuracy at predicting or classifying new 
data, such as which visual characteristics on bridges might 
indicate deterioration.

 Validation: This subset serves as a quality check during 
training. It is a separate set of the data used to fine-tune the 
model’s hyperparameters (settings that control its learning 
process). This helps prevent overfitting, which happens 
when the model performs well on training data but poorly 
on unseen data. For instance, a traffic congestion prediction 
model might overfit if it uses only data from similar road 
segments, such as city streets. Validation data ensure that 
the model can generalize its learnings to different situations 
and datasets.

 Testing: Finally, new data are used to evaluate the final AI 
model. This step is crucial to assess how well the model per-
forms in real-world scenarios, such as real-time traffic fore-
casting. Testing confirms the model’s accuracy and reliability 
and helps identify any potential issues before deployment. 

FIGURE 1
GRAPHIC COURTESY OF DEWBERRY

Given high-quality training data, AI models can lever-
age various learning paradigms to extract knowledge and 
generate outputs that guide actions. In recent decades, 
three categories have emerged as AI’s core machine learning 
paradigms: supervised learning, unsupervised learning, 
and reinforcement learning. Each offers unique benefits and 
challenges based on the potential applications. 

Supervised learning is an approach for making accurate 
predictions for a particular task, but it requires labeled data, 
which means data in which both the inputs and the desired 
outputs are known. Unsupervised learning is excellent for 
discovering hidden patterns in data, but it needs expert 
interpretation to make the results actionable.

Reinforcement learning is great at optimizing complex op-
erations, such as a city-wide traffic signal system, but it re-
quires accurate simulation data and a clear reward structure, 
such as earning points for the number of vehicles that move 
through a signalized intersection simulation. The AI system 
learns which actions result in the best score. 
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FIGURE 2
GRAPHIC COURTESY OF DEWBERRY

improve the application. For example, the training data could 
include images with different lighting conditions, crack types, 
and materials. Although these training data can sometimes 
be expensive and time-consuming to collect, once the model 
is properly trained, it can automate a well-defined task to 
expedite routine operations.  

Several transportation agencies have already implemented AI 
methods to evaluate traffic camera footage using supervised 
learning techniques. In New York City, for example, comput-
er vision, a form of AI, was used with traffic cameras facing 
crosswalks or sidewalks “to develop a scalable data acquisi-

tion framework to collect large-scale pedestrian data auto-
matically and continuously from sampled streaming footage,” 
according to the case study, “Leveraging Existing Infrastruc-
ture and Computer Vision for Pedestrian Detection.” 

The case study focused on social distancing during the 
COVID-19 pandemic and was conducted by researchers at 
Connected Cities for Smart Mobility towards Accessible and 
Reliable Transportation, a U.S. Department of Transporta-
tion university transportation center at New York Universi-
ty’s Tandon School of Engineering. The study is highlighted 
on the U.S. DOT’s website for the Intelligent Transportation 
Systems Joint Program Office.

The technology in the case study was able to approximate 
the distance between pedestrians, which could then be 
“scaled up to calculate distances under different environ-
mental conditions (e.g., cameras with different angles),” per 
the case study. 

Because the system can “monitor pedestrian density and 
distribution as well as temporal variations in behavior,” the 
information collected can help urban planners and engineers 
better analyze new pedestrian and mobility patterns, the case 
study noted. The technology can also be applied to other 
situations, including the “detection of parking and bus lane 
occupancy, detection of on-street illegal and double parking, 
and usage of pedestrian density information at bus stops to 
assess transit demand.” 

AI-powered computer 
vision combined with traffic 
cameras can collect large-
scale pedestrian data.

PHOTOGRAPH COURTESY OF  
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FIGURE 3
GRAPHIC COURTESY OF DEWBERRY

UNSUPERVISED: PROMOTING DISCOVERY 
The unsupervised learning approach involves training AI on 
data without any specific output targets, meaning the data 
are unlabeled, without input-output pairings. The AI inde-
pendently seeks patterns and relationships within the data 
that will help users better understand the data and data- 
generating process. For example, an unsupervised learning 
algorithm applied to public transit arrival data may identify 
many useful patterns without being told specifically what to 
look for (see Figure 3).

In this scenario, the unlabeled data inputs include sched-
uled arrival and actual arrival times for various transit stop 
locations, as well as the departure time, date, and passenger 
volume. The AI system analyzes these data to find inherent 
patterns and relationships. It may begin to associate peak 
usage times and anomalies in performance or cluster different 
transit stops based on ridership demand patterns. 

The system’s outputs would then cluster the data into different 
groups and identify unusual performance conditions that 
indicate the system’s operational health. The AI could identify 
certain peak times and days that will help transportation 
engineers set schedule strategies and ideal maintenance times 
and identify precursors to potential technical issues. 

Since the input data are unlabeled, the patterns identified by 
the AI may sometimes only be meaningful or valuable with 
additional expert interpretation. Clustering does not imply 
that the AI assigns a meaningful label; it only estimates that 
there are shared characteristics in that set of observations 
that could be meaningful to an informed engineer. Still, the 

AI output could bring attention to complex relationships that 
inform transportation operations. 

The Delaware Department of Transportation is developing an 
AI-based transportation operations and management system 
using unsupervised learning to improve how traffic flows are 
predicted. The system identifies anomalies and inefficiencies, 
generating, evaluating, and executing response solutions to 
existing and predicted traffic congestion. 

“It will be a system that goes beyond notifying technicians and 
the traveling public of congestion to proactively make changes 
that enhance mobility while continuing to evolve over time,” ac-
cording to DelDOT’s January 2024 final report on the project.

AI systems might 
try different phasing 
policies for traffic 
signals to minimize 

congestion.
PHOTOGRAPH COURTESY OF  
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Reinforcement learning involves training AI through rewards 
and penalties. In football, imagine the “reward” as the points 
earned for scoring a touchdown. Given a set of scenarios, 
the AI then tries many strategies before it learns which plays 
(actions) are most effective at scoring points (rewards) in a 
given scenario. The AI learns by trying different actions and 
receiving feedback based on the outcomes. 

For example, an AI system for traffic signal operations might 
try different phasing policies to determine which are most 
effective at minimizing congestion. Reinforcement learning 
assigns rewards for the actions that result in better outcomes 
(less congestion) and penalties for poorer outcomes (such as 
crashes). (See Figure 4.)

In a traffic signal timing scenario, the inputs might involve 
traffic data such as vehicle counts, wait times at inter-
sections, and traffic flow rates. The system could set an 
operational parameter, such as minimizing wait times for 
the traffic signal while adhering to acceptable signal phase 
transitions. The AI system would then learn through a 
reward and penalty system by trying different traffic signal 
timings and observing the outcomes. It adjusts its actions to 
maximize rewards based on performance metrics (such as 
short delays per vehicle and short queue length) and mini-
mize penalties.  

The system’s outputs might iteratively adjust the signal 
timings to improve performance, receiving rewards for 
improvements causing shorter delay times and penalties for 
longer delay times. Over time, the AI would learn the most 
effective traffic signal patterns for different times of day and 
traffic volumes.  

Engineers need to know, however, that reinforcement 
learning requires considerable realistic simulation data — 
perhaps terabytes of text data and hundreds of billions of 
written words — and an expectation of continuous learning 
for real-time applications, which can be computationally 
intensive and complex to manage. The system also needs 
a clear and consistent reward structure, such as points 
for each vehicle moved through an intersection, to learn 
effectively. Otherwise, the AI will identify ways to exploit a 
poorly defined training structure. The system might “cheat,” 
for example, by repeating the same task multiple times to 
maximize the number of reward points earned. 

The Texas Department of Transportation is evaluating the 
use of reinforcement learning algorithms to dynamically 

adjust signal timing, especially to respond to unexpected 
traffic incidents. To train the signal timing model, the AI 
relies on a reward function measured by the queue length, 
learning to find which traffic signal actions reduce the queue 
length for all network links. 

Using simulation data, the AI model can outperform tra-
ditional pre-timed traffic signals during both the expected 
traffic operations and random disrupted conditions. “The 
incident generation module creates a realistic learning 
environment for (reinforcement learning) agents, resulting 
in improved system performance and reduced congestion,” 
according to the project’s September 2023 final report.
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REINFORCEMENT: REWARD-BASED COACHING  

FIGURE 4
GRAPHIC COURTESY OF DEWBERRY

Engineers must 
recognize that the 

effectiveness of an AI 
system hinges on the  
quality of the training 
data and the selected 
AI learning process. 
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Generative AI — including generative pre-trained trans-
formers, or GPTs — is one of the most familiar, accessible, 
and valuable AI tools for a variety of applications. But en-
gineers need to remember that a GPT operates on the data 
it was trained on, which may not always be disclosed to the 
users or readily interpretable by them. So, engineers must 
understand that making inquiries or seeking applications 
that differ from the intended use of the GPT system could 
result in inaccurate outputs — called hallucinations, gibber-
ish, garbage, and other equally undesirable terms. 

Initially, GPT models undergo unsupervised learning, 
absorbing language structure and context from vast textual 
data without specific guidance. This complex training 
process enables the model to identify and replicate complex 
language patterns autonomously. 

Following this, supervised fine-tuning adjusts the model’s 
responses for specific tasks, enhancing relevance and effec-
tiveness. For example, ChatGPT-3, released to the public in 
June 2020, uses a sophisticated type of deep neural network 
known as a transformer, which contains more than 175 
billion tunable parameters. These parameters are fine-tuned 
through training to help the system accurately predict the 
next word in a sentence. By using hundreds of terabytes of 
text available on the internet, GPT systems can develop an 
incredible understanding of grammar and facts about the 
world, and even some reasoning abilities.

Because the quality of these training data is crucial, engi-
neers and other decision-makers must rigorously audit GPT 
systems to detect biases and ensure diverse data represen-
tation. Such scrutiny is necessary to prevent misinformed 
decisions and to ensure that the system serves the public 
good, adhering to current ethical and societal standards.

To successfully implement AI, civil 
engineers must gain skills in data science 

and AI model interpretation.
PHOTOGRAPH COURTESY OF ISTOCK.COM/SUCHAT LONGTHARA
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Over the years, the civil engineering field has dealt with 
various disruptive technologies, including computer-aided 
design, geographic information systems, building information 
modeling, and virtual design and construction, each bringing 
about significant changes to project planning and operations. 
AI, however, represents a disruption that extends beyond core 
engineering production processes and services.  

Unlike adopting new software, using AI represents a tectonic 
shift comparable to the introduction of personal computers or 
the internet, which were already well-established when many 
in the current engineering workforce began their careers. 
Compounding this unfamiliar experience, the pace of com-
mercialization of AI systems is unprecedented. Although the 
core machine learning paradigms have existed for decades, 
AI’s recent rapid acceleration has caused impulsive responses 
— some overly trusting, others excessively cautious.  

To successfully implement AI, civil engineers must gain skills 
in data science and AI model interpretation, while organiza-
tions need to foster a culture of innovation that embraces con-
tinuous learning and experimentation with AI technologies. 

In this way, the civil engineering industry can navigate this 
technological shift and leverage AI to create smarter, more 
efficient, and more sustainable transportation systems. 

The optimal approach to integrate AI within civil engineering 
firms remains an open question. The answer will likely vary 
depending on the size, resources, and specific needs of each 
firm. But the potential of AI offers an exciting future, one 
fueled by the unsatiated curiosity of the engineers. CE

For civil engineering applications, GPT systems can 
analyze datasets such as community surveys, public meet-
ing transcripts, transportation performance data, and proj-
ect records. By leveraging unsupervised and supervised 
learning, the model can uncover complex relationships 
between factors such as public opinions, transportation 
conditions, and project outcomes. The resulting outputs 
could inform policy decisions and offer insights through 
conversational interfaces, enabling stakeholders to quickly 
access critical information about transportation projects.

There is considerable potential for GPTs tailored to civil 
engineering applications. Unlike standard AI models that 
rely on broad internet searches, custom GPTs can be 
trained on curated datasets defined by the user, allow-
ing them to focus on relevant projects and policies. This 
customized approach empowers stakeholders to then 
“converse” with the transportation system, using natural 
language to rapidly extract insights from these tailored 
datasets, such as: 

 What are the community’s greatest concerns about the 
new project? 
 How do different demographic groups perceive 
transportation services?
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 What are the common causes of maintenance issues in 
specific types of infrastructure?
 Are there any patterns in crash severity, locations, or 
timing? 
 What construction practices have resulted in the lowest 
financial and safety risks? 

While AI can provide valuable insights and automate 
routine tasks, its integration into civil engineering requires 
careful consideration, ongoing learning, and robust collab-
oration between engineers and data scientists to maximize 
benefits and minimize risks. AI does not replace engineering 
judgment.

TRANSPORTATION APPLICATIONS

PREPARING FOR THE AI DISRUPTION

CODY A. PENNETTI, PH.D., P.E.
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The potential of AI 
offers an exciting 

future, one fueled by 
the unsatiated curiosity 

of the engineers. 
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